Multi-view action recognition using local similarity random forests and sensor fusion

نویسندگان

  • Fan Zhu
  • Ling Shao
  • Mingxiu Lin
چکیده

This paper addresses the multi-view action recognition problem with a local segment similarity voting scheme, upon which we build a novel multi-sensor fusion method. The recently proposed random forests classifier is used to map the local segment features to their corresponding prediction histograms. We compare the results of our approach with those of the baseline Bag-of-Words (BoW) and the Naïve–Bayes Nearest Neighbor (NBNN) methods on the multi-view IXMAS dataset. Additionally, comparisons between our multi-camera fusion strategy and the normally used early feature concatenating strategy are also carried out using different camera views and different segment scales. It is proven that the proposed sensor fusion technique, coupled with the random forests classifier, is effective for multiple view human action

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Sign Detection and Recognition using Features Combination and Random Forests

In this paper, we present a computer vision based system for fast robust Traffic Sign Detection and Recognition (TSDR), consisting of three steps. The first step consists on image enhancement and thresholding using the three components of the Hue Saturation and Value (HSV) space. Then we refer to distance to border feature and Random Forests classifier to detect circular, triangular and rectang...

متن کامل

Detecting Surface Waters Using Data Fusion of Optical and Radar Remote Sensing Sensor

Identification and monitoring of surface water using remote sensing have become very important in recent decades due to its importance in human needs and political decisions. Therefore, surface water has been studied using remote sensing systems and Sentinel-1 and Sentinel-2 sensors in this study. In this paper, two data fusion approaches and decision fusion improve the accuracy of surface wate...

متن کامل

Multi-Focus Image Fusion in DCT Domain using Variance and Energy of Laplacian and Correlation Coefficient for Visual Sensor Networks

The purpose of multi-focus image fusion is gathering the essential information and the focused parts from the input multi-focus images into a single image. These multi-focus images are captured with different depths of focus of cameras. A lot of multi-focus image fusion techniques have been introduced using considering the focus measurement in the spatial domain. However, the multi-focus image ...

متن کامل

Human Activity Recognition with Random Forests

2 This paper describes and analyzes an application of the random forests 3 machine learning technique resulting in identification of human activities. 4 The data originates from the sensors on a Samsung Galaxy S2 smart phone, 5 and underwent significant processing to transform the 6 sensor outputs into 6 a set of 561 features. Applying random forests required significant efforts in 7 parameter ...

متن کامل

Weighted Fusion of Depth and Inertial Data to Improve View Invariance for Human Action Recognition

This paper presents an extension to our previously developed fusion framework [10] involving a depth camera and an inertial sensor in order to improve its view invariance aspect for human action recognition applications. A computationally efficient view estimation based on skeleton joints is considered in order to select the most relevant depth training data when recognizing test samples. Two c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2013